Welcome to Physics Education Center!



ধারক ও ধারকত্ব: সম্পূর্ণ গাইড, শ্রেণী ও সমান্তরাল সংযোগ সহ

ধারক ও ধারকত্ব সম্পর্কে একটি সম্পূর্ণ গাইড খুঁজছেন? এই আর্টিকেলে ধারকের গঠন, কার্যপ্রণালী, সমান্তরাল পাত ও গোলকের ধারকত্ব, এবং শ্রেণী ও সমান্তরাল সংযোগের বিস্তারিত আলোচনা করা হয়েছে।

ধারক বা ক্যাপাসিটর হলো এমন একটি যন্ত্র যা বৈদ্যুতিক শক্তিকে চার্জ হিসেবে জমা করে রাখে। এটি অনেকটা ব্যাটারির মতোই কাজ করে, তবে এর মূল পার্থক্য হলো এটি খুব দ্রুত চার্জ ও ডিসচার্জ হতে পারে। আমাদের দৈনন্দিন জীবনে ব্যবহৃত প্রায় সব ইলেকট্রনিক ডিভাইসে, যেমন—মোবাইল ফোন, কম্পিউটার, টেলিভিশন, ফ্যান, এবং পাওয়ার সাপ্লাই ইউনিটে ধারক ব্যবহার করা হয়।

ধারকের গঠন এবং কার্যপ্রণালী

চিত্রঃ ধারকের গঠন

একটি সাধারণ ধারকের মূল উপাদান হলো দুটি পরিবাহী পাত বা প্লেট, যাদের মাঝে একটি অপরিবাহী পদার্থ (যেমন—কাগজ, প্লাস্টিক, মাইকা, বা বায়ু) থাকে। এই অপরিবাহী পদার্থকে ডাই-ইলেকট্রিক বলা হয়। যখন একটি ডিসি (ডাইরেক্ট কারেন্ট) ভোল্টেজ উৎস এই ধারকের দুই প্রান্তে যুক্ত করা হয়, তখন ভোল্টেজ উৎসের ধনাত্মক প্রান্ত থেকে ইলেকট্রন পরিবাহী প্লেটে যায় এবং এটি ধনাত্মক চার্জে চার্জিত হয়। একই সময়ে, ভোল্টেজ উৎসের ঋণাত্মক প্রান্ত থেকে ইলেকট্রন অন্য প্লেটে এসে জমা হয় এবং এটি ঋণাত্মক চার্জে চার্জিত হয়। এই দুটি প্লেটের মাঝে ডাই-ইলেকট্রিক থাকার কারণে ইলেকট্রন সরাসরি এক প্লেট থেকে অন্য প্লেটে যেতে পারে না।

এই প্রক্রিয়ায়, দুটি প্লেটের মধ্যে একটি বিভব পার্থক্য সৃষ্টি হয়। ভোল্টেজ উৎস সরিয়ে নিলেও এই চার্জ ধারকের মধ্যে জমা থাকে, যতক্ষণ না কোনো বর্তনীর মাধ্যমে ডিসচার্জ করা হয়।

ধারকত্ব (Capacitance) কী?

কোনো ধারকের চার্জ ধরে রাখার ক্ষমতাকে ধারকত্ব বলা হয়। এটি ধারকের একটি মৌলিক বৈশিষ্ট্য। ধারকত্ব পরিমাপ করা হয় একটি নির্দিষ্ট ভোল্টেজ প্রয়োগে ধারকটিতে কী পরিমাণ চার্জ জমা হয়, তা দিয়ে।

যদি একটি ধারকে V পরিমাণ ভোল্টেজ প্রয়োগ করার ফলে Q পরিমাণ চার্জ জমা হয়, তবে এর ধারকত্ব C হবে:

\(C = \frac{Q}{V}\) 

  • এখানে:
  •  C হলো ধারকত্ব (ক্যাপাসিট্যান্স)
  •  Q হলো ধারকে সঞ্চিত চার্জ
  •  V হলো ধারকের দুই প্রান্তের বিভব পার্থক্য

ধারকত্বের এসআই (SI) একক হলো ফ্যারাড (Farad)। একজন বিজ্ঞানী মাইকেল ফ্যারাডের নামানুসারে এই একক নামকরণ করা হয়েছে। এক ফ্যারাড ধারকত্ব বলতে বোঝায়, যখন কোনো ধারকে ১ ভোল্ট বিভব পার্থক্য প্রয়োগ করলে ১ কুলম্ব চার্জ জমা হয়। যেহেতু ফ্যারাড একটি বড় একক, তাই সাধারণত মাইক্রোফ্যারাড \((\mu F)\), ন্যানোফ্যারাড (nF), এবং পিকোফ্যারাড (pF) এককগুলো ব্যবহার করা হয়।

ধারকের ব্যবহার

ধারক বিভিন্ন ক্ষেত্রে গুরুত্বপূর্ণ ভূমিকা পালন করে। কিছু গুরুত্বপূর্ণ ব্যবহার নিচে উল্লেখ করা হলো:

 পাওয়ার সাপ্লাই

এসি (অল্টারনেটিং কারেন্ট) থেকে ডিসি কারেন্টে রূপান্তরের সময় ধারক একটি মসৃণ ভোল্টেজ সরবরাহ করে। এটি ভোল্টেজের ওঠানামা কমাতে সাহায্য করে।

 ফিল্টার সার্কিট

রেডিও, টেলিভিশন, এবং অডিও সিস্টেমে ধারক ব্যবহার করে অবাঞ্ছিত ফ্রিকোয়েন্সি ফিল্টার করা হয়।

 সময় নির্ধারণকারী সার্কিট

কম্পিউটার ও টাইমার সার্কিটে ধারক ব্যবহার করে নির্দিষ্ট সময় ব্যবধান তৈরি করা হয়।

 ফ্ল্যাশলাইট

ক্যামেরার ফ্ল্যাশে দ্রুত ও শক্তিশালী আলোর ঝলকানির জন্য ধারক ব্যবহার করা হয়। এটি অল্প সময়ের মধ্যে প্রচুর শক্তি নির্গত করতে পারে।

 মোটর স্টার্টার

বৈদ্যুতিক মোটরের শুরুতে অতিরিক্ত টর্ক বা ঘূর্ণন শক্তি সরবরাহের জন্য ধারক ব্যবহৃত হয়।

ধারকের প্রকারভেদ

গঠন ও ডাই-ইলেকট্রিক পদার্থের ওপর ভিত্তি করে ধারককে বিভিন্ন ভাগে ভাগ করা যায়। যেমন:

 ইলেকট্রোলাইটিক ধারক

উচ্চ ধারকত্বের জন্য ব্যবহৃত হয়। এদের একটি ধনাত্মক এবং একটি ঋণাত্মক প্রান্ত থাকে।

 সিরামিক ধারক

ছোট আকারের, কম ধারকত্বের জন্য ব্যবহৃত হয়। এরা তাপমাত্রার পরিবর্তন সহ্য করতে পারে।

 মাইলারসিরাম

তাপমাত্রা স্থিতিশীলতা এবং ভালো মানের জন্য পরিচিত।

 ভেরিয়েবল ধারক

এদের ধারকত্ব পরিবর্তন করা যায়। রেডিও টিউনিং সার্কিটে এরা ব্যবহৃত হয়।

ধারক ও ধারকত্ব আধুনিক ইলেকট্রনিক্সের একটি অপরিহার্য অংশ। সার্কিটের নকশা ও কার্যকারিতা বোঝার জন্য ধারকের এই মৌলিক ধারণাগুলো অত্যন্ত গুরুত্বপূর্ণ।

সমান্তরাল পাত ধারক ও গোলকের ধারকত্ব

সমান্তরাল পাত ধারকের ধারকত্ব

চিত্রঃ সমান্তরাল পাত ধারক

একটি সমান্তরাল পাত ধারক দুটি সমান্তরাল পরিবাহী পাত দিয়ে গঠিত, যাদের মাঝে একটি ডাই-ইলেকট্রিক পদার্থ থাকে। যখন এই পাত দুটির মধ্যে একটি বিভব পার্থক্য সৃষ্টি হয়, তখন একটি পাতে ধনাত্মক চার্জ (+Q) এবং অন্যটিতে ঋণাত্মক চার্জ (-Q) জমা হয়।

একটি সমান্তরাল পাত ধারকের ধারকত্ব নিম্নলিখিত তিনটি বিষয়ের উপর নির্ভর করে:

১. পাতের ক্ষেত্রফল (A): ধারকত্ব পাতের ক্ষেত্রফলের সমানুপাতিক। অর্থাৎ, পাতের ক্ষেত্রফল যত বেশি হবে, ধারকত্বও তত বেশি হবে।

২. পাতের মধ্যবর্তী দূরত্ব (d): ধারকত্ব পাতের মধ্যবর্তী দূরত্বের ব্যস্তানুপাতিক। দূরত্ব কম হলে ধারকত্ব বেশি হয়।

৩. ডাই-ইলেকট্রিক পদার্থের প্রকৃতি \((\epsilon):\) পাত দুটির মাঝে ব্যবহৃত ডাই-ইলেকট্রিক পদার্থের তড়িৎভেদ্যতা (permittivity) যত বেশি হবে, ধারকত্বও তত বেশি হবে।

এই তিনটি বিষয়ের উপর ভিত্তি করে সমান্তরাল পাত ধারকের ধারকত্বের সূত্র হলো:

$$ C = \frac{\epsilon A}{d} $$

যেখানে, C হলো ধারকত্ব, 

A হলো পাতের ক্ষেত্রফল, 

d হলো পাত দুটির মধ্যবর্তী দূরত্ব, এবং 

\(\epsilon\) হলো ডাই-ইলেকট্রিক পদার্থের তড়িৎভেদ্যতা। 

শূন্যস্থানের জন্য এই সূত্রটি হয়:

$$ C_0 = \frac{\epsilon_0 A}{d} $$

এখানে \(\epsilon_0\) হলো শূন্যস্থানের তড়িৎভেদ্যতা।

গোলকের ধারকত্ব

চিত্রঃ গোলকের ধারকত্ব

একটি বিচ্ছিন্ন গোলীয় পরিবাহীর ধারকত্ব তার ব্যাসার্ধের উপর নির্ভর করে। যখন একটি r ব্যাসার্ধের পরিবাহী গোলকে Q পরিমাণ চার্জ দেওয়া হয়, তখন চার্জটি গোলকের পৃষ্ঠে সমানভাবে ছড়িয়ে পড়ে। এর ফলে, গোলকের পৃষ্ঠে একটি বিভব (V) সৃষ্টি হয়।

এই গোলকের বিভব নির্ণয়ের সূত্র হলো:

$$ V = \frac{1}{4 \pi \epsilon_0} \frac{Q}{r} $$

যেহেতু ধারকত্বের সংজ্ঞা অনুসারে 

$$ C = \frac{Q}{V},$$ 

তাই গোলকের ধারকত্ব হবে:

$$ C = \frac{Q}{V} = \frac{Q}{\frac{1}{4 \pi \epsilon_0} \frac{Q}{r}} = 4 \pi \epsilon_0 r $$

সুতরাং, একটি গোলকের ধারকত্ব তার ব্যাসার্ধের সমানুপাতিক। এর মানে হলো, গোলকের ব্যাসার্ধ যত বড় হবে, তার চার্জ ধারণ ক্ষমতাও তত বেশি হবে।

যদি গোলকটি কোনো ডাই-ইলেকট্রিক মাধ্যমে থাকে, তবে ধারকত্বের সূত্রটি হয়:

$$ C = 4 \pi \epsilon_0 K r $$

এখানে, K হলো ডাই-ইলেকট্রিক ধ্রুবক।

ধারকের সন্নিবেশ বা সংযোগ

ধারক বা ক্যাপাসিটরকে একটি বৈদ্যুতিক বর্তনীতে একাধিক উপায়ে সংযুক্ত করা যেতে পারে। ধারকের প্রধান দুটি সংযোগ পদ্ধতি হলো শ্রেণী সংযোগ (Series Connection) এবং সমান্তরাল সংযোগ (Parallel Connection)। এই দুটি পদ্ধতির ভিন্ন ভিন্ন বৈশিষ্ট্য রয়েছে, যা সার্কিটের প্রয়োজন অনুযায়ী ব্যবহার করা হয়।

শ্রেণী সংযোগ (Series Connection)

চিত্রঃ ধারকের শ্রেণী সংযোগ

শ্রেণী সংযোগে, একাধিক ধারককে একটির পর একটির সাথে এমনভাবে যুক্ত করা হয় যে, একটি ধারকের শেষ প্রান্তটি পরের ধারকের প্রথম প্রান্তের সাথে যুক্ত থাকে। এই ধরনের সংযোগে, সমস্ত ধারকের মধ্য দিয়ে একই পরিমাণ চার্জ প্রবাহিত হয়।

বৈশিষ্ট্য:

চার্জ: প্রতিটি ধারকে সঞ্চিত চার্জের পরিমাণ সমান থাকে।

বিভব পার্থক্য: বর্তনীর মোট বিভব পার্থক্য প্রতিটি ধারকের পৃথক বিভব পার্থক্যের সমষ্টির সমান।

   $$ V = V_1 + V_2 + V_3 + ... $$

সমতুল্য ধারকত্ব

শ্রেণী সংযোগে যুক্ত ধারকগুলোর সমতুল্য ধারকত্ব (Equivalent Capacitance) তাদের প্রত্যেকের ধারকত্বের উল্টো মানের যোগফলের উল্টো মানের সমান। এটি সাধারণ ধারকগুলোর চেয়ে কম হয়।

   $$ \frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + ... $$

শ্রেণী সংযোগের ব্যবহার

এই ধরনের সংযোগ ব্যবহার করা হয় যখন একটি সার্কিটে কম ধারকত্বের প্রয়োজন হয় অথবা যখন উচ্চ বিভব পার্থক্য সহ্য করার জন্য একাধিক ধারক ব্যবহার করতে হয়। এটি ভোল্টেজ বিভাজক হিসেবেও কাজ করে।

সমান্তরাল সংযোগ (Parallel Connection)

চিত্রঃ ধারকের সমান্তরাল সংযোগ

সমান্তরাল সংযোগে, সমস্ত ধারকের প্রথম প্রান্তগুলো এক সাধারণ বিন্দুতে এবং শেষ প্রান্তগুলো অন্য এক সাধারণ বিন্দুতে যুক্ত থাকে। এই ধরনের সংযোগে, প্রতিটি ধারকের দুই প্রান্তের বিভব পার্থক্য সমান থাকে।

বৈশিষ্ট্য:

চার্জ: বর্তনীর মোট চার্জ প্রতিটি ধারকে সঞ্চিত চার্জের সমষ্টির সমান।

   $$ Q = Q_1 + Q_2 + Q_3 + ... $$

বিভব পার্থক্য: প্রতিটি ধারকের দুই প্রান্তের বিভব পার্থক্য সমান থাকে এবং এটি বর্তনীর মোট বিভব পার্থক্যের সমান।

$$ V = V_1 = V_2 = V_3 = ... $$

সমতুল্য ধারকত্ব

সমান্তরাল সংযোগে যুক্ত ধারকগুলোর সমতুল্য ধারকত্ব তাদের প্রত্যেকের ধারকত্বের যোগফলের সমান। এর ফলে মোট ধারকত্ব বৃদ্ধি পায়।

   $$ C_{eq} = C_1 + C_2 + C_3 + ... $$

সমান্তরাল সংযোগের ব্যবহার

এই ধরনের সংযোগ ব্যবহার করা হয় যখন একটি সার্কিটে উচ্চ ধারকত্বের প্রয়োজন হয়। এটি এমন সার্কিটে ব্যবহৃত হয় যেখানে বেশি পরিমাণ শক্তি বা চার্জ জমা করার প্রয়োজন পড়ে।

শ্রেণী ও সমান্তরাল সংযোগের তুলনা:

শ্রেণী ও সমান্তরাল সংযোগের তুলনা:

বৈশিষ্ট্য শ্রেণী সংযোগ সমান্তরাল সংযোগ
সংযোগ পদ্ধতি একটির পর একটি সাধারণ দুই বিন্দুতে
চার্জ প্রতিটি ধারকে সমান (Q) প্রতিটি ধারকে ভিন্ন ভিন্ন (Q1, Q2, ...)
বিভব পার্থক্য প্রতিটি ধারকে ভিন্ন (V1, V2, ...) প্রতিটি ধারকে সমান (V)
সমতুল্য ধারকত্ব মোট ধারকত্ব কমে যায় মোট ধারকত্ব বেড়ে যায়
সূত্র 1/Ceq = ∑ 1/Ci Ceq = ∑ Ci
প্রধান ব্যবহার উচ্চ বিভব পার্থক্য বা কম ধারকত্ব উচ্চ ধারকত্ব বা বেশি চার্জের জন্য

এখানে ধারকের সংযোগ সম্পর্কিত একটি সৃজনশীল প্রশ্ন ও তার সমাধান দেওয়া হলো।

প্রশ্ন: আপনার কাছে \(2 \mu F, 4 \mu F\) এবং \(6 \mu F\) ধারকত্ববিশিষ্ট তিনটি ধারক রয়েছে।

ক) আপনি যদি \(2 \mu F\) এবং \(4 \mu F\) ধারক দুটিকে শ্রেণী সংযোগে যুক্ত করেন এবং তারপর সেই সংযোগের সাথে \(6 \mu F\) ধারকটিকে সমান্তরাল সংযোগে যুক্ত করেন, তাহলে বর্তনীর মোট সমতুল্য ধারকত্ব কত হবে?

খ) যদি পুরো বর্তনীটি একটি 12 V ব্যাটারির সাথে যুক্ত করা হয়, তবে \(6 \mu F\) ধারকটিতে কত চার্জ জমা হবে?

সমাধান:

ক) সমতুল্য ধারকত্ব নির্ণয়

প্রথমে, \(2 \mu F (C_1)\) এবং \(4 \mu F (C_2)\) ধারক দুটি শ্রেণী সংযোগে যুক্ত আছে। এদের সমতুল্য ধারকত্ব \((C_{12})\) হবে:

$$ \frac{1}{C_{12}} = \frac{1}{C_1} + \frac{1}{C_2} $$

$$ \frac{1}{C_{12}} = \frac{1}{2 \mu F} + \frac{1}{4 \mu F} $$

$$ \frac{1}{C_{12}} = \frac{2+1}{4 \mu F} = \frac{3}{4 \mu F} $$

$$ C_{12} = \frac{4}{3} \mu F \approx 1.33 \mu F$$

এখন, এই শ্রেণী সংযোগের সমতুল্য ধারকত্ব \((C_{12})\) এবং \(6 \mu F (C_3)\) ধারকটি সমান্তরাল সংযোগে যুক্ত। মোট সমতুল্য ধারকত্ব \((C_{eq})\) হবে:

$$ C_{eq} = C_{12} + C_3 $$

$$ C_{eq} = \frac{4}{3} \mu F + 6 \mu F $$

$$ C_{eq} = \frac{4+18}{3} \mu F = \frac{22}{3} \mu F $$

$$ C_{eq} \approx 7.33 \mu F $$

সুতরাং, বর্তনীর মোট সমতুল্য ধারকত্ব হবে প্রায় \(7.33 \mu F।\) 

খ) \(6 \mu F\) ধারকে সঞ্চিত চার্জ নির্ণয়

সমান্তরাল সংযোগে প্রতিটি ধারকের বিভব পার্থক্য সমান থাকে এবং তা বর্তনীর মোট বিভব পার্থক্যের সমান। যেহেতু \(6 \mu F\) ধারকটি সরাসরি 12 V ব্যাটারির সাথে সমান্তরালভাবে যুক্ত, এর বিভব পার্থক্যও 12 V হবে।

ধারকে সঞ্চিত চার্জের সূত্র হলো Q = CV।

এখানে,

  •  \(C = 6 \mu F = 6 \times 10^{-6} \, F\) 
  •  V = 12 V

$$ Q = (6 \times 10^{-6} F) \times (12 V) $$

$$ Q = 72 \times 10^{-6} C $$

$$ Q = 72 \mu C $$

সুতরাং, \(6 \mu F\) ধারকটিতে \(72 \mu C\) চার্জ জমা হবে।

উপসংহার

এই বিস্তারিত আলোচনা থেকে আমরা বুঝতে পারি যে ধারক বা ক্যাপাসিটর আধুনিক ইলেকট্রনিক্স জগতের একটি অপরিহার্য উপাদান। এটি শুধুমাত্র চার্জ ধরে রাখার একটি যন্ত্র নয়, বরং বৈদ্যুতিক শক্তিকে নিয়ন্ত্রণ ও স্থিতিশীল রাখতে এটি গুরুত্বপূর্ণ ভূমিকা পালন করে।

আমরা দেখেছি যে, একটি ধারকের ক্ষমতা বা ধারকত্ব তার গঠন, যেমন—পাতের ক্ষেত্রফল, দূরত্ব এবং ডাই-ইলেকট্রিক পদার্থের ওপর নির্ভর করে। সমান্তরাল পাত ধারক থেকে শুরু করে গোলকের ধারকত্ব পর্যন্ত প্রতিটি গঠনের নিজস্ব বৈশিষ্ট্য রয়েছে।

ধারকের শ্রেণী ও সমান্তরাল সংযোগ বর্তনীতে এদের কার্যকারিতা নির্ধারণ করে। যেখানে শ্রেণী সংযোগ মোট ধারকত্ব কমিয়ে আনে এবং উচ্চ বিভব পার্থক্য নিয়ন্ত্রণের জন্য ব্যবহৃত হয়, সেখানে সমান্তরাল সংযোগ মোট ধারকত্ব বাড়িয়ে তোলে, যা অধিক চার্জ জমা করার জন্য সহায়ক।

সুতরাং, ধারকের এই মৌলিক নীতিগুলো বোঝা কেবল তাত্ত্বিক জ্ঞান নয়, বরং বিভিন্ন ইলেকট্রনিক সার্কিট ডিজাইন ও মেরামতের ক্ষেত্রে এটি একটি কার্যকরী দক্ষতা। ধারক ও ধারকত্ব সম্পর্কিত এই জ্ঞান আমাদের দৈনন্দিন জীবনে ব্যবহৃত ইলেকট্রনিক ডিভাইসগুলো কীভাবে কাজ করে, তা বুঝতে সাহায্য করে।

Designed by Mostak Ahmed